skip to main content


Search for: All records

Creators/Authors contains: "Wei, Xiaohan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we consider hybrid parallelism—a paradigm that em- ploys both Data Parallelism (DP) and Model Parallelism (MP)—to scale distributed training of large recommendation models. We propose a compression framework called Dynamic Communication Thresholding (DCT) for communication-efficient hybrid training. DCT filters the entities to be communicated across the network through a simple hard-thresholding function, allowing only the most relevant information to pass through. For communication efficient DP, DCT compresses the parameter gradients sent to the parameter server during model synchronization. The threshold is updated only once every few thousand iterations to reduce the computational overhead of compression. For communication efficient MP, DCT incorporates a novel technique to compress the activations and gradients sent across the network during the forward and backward propagation, respectively. This is done by identifying and updating only the most relevant neurons of the neural network for each training sample in the data. We evaluate DCT on publicly available natural language processing and recommender models and datasets, as well as recommendation systems used in production at Facebook. DCT reduces communication by at least 100× and 20× during DP and MP, respectively. The algorithm has been deployed in production, and it improves end-to-end training time for a state-of-the-art industrial recommender model by 37%, without any loss in performance. 
    more » « less
  2. We propose a new primal-dual homotopy smoothing algorithm for a linearly constrained convex program, where neither the primal nor the dual function has to be smooth or strongly convex. The best known iteration complexity solving such a non-smooth problem is O(ε−1). In this paper, we show that by leveraging a local error bound condition on the dual function, the proposed algorithm can achieve a better primal convergence time of O 􏰕ε−2/(2+β) log2(ε−1)􏰖, where β ∈ (0, 1] is a local error bound parameter. As an example application of the general algorithm, we show that the distributed geometric median problem, which can be formulated as a constrained convex program, has its dual function non-smooth but satisfying the aforementioned local error bound condition with β = 1/2, therefore enjoying a convergence time of O 􏰕ε−4/5 log2(ε−1)􏰖. This result improves upon the O(ε−1) convergence time bound achieved by existing distributed optimization algorithms. Simulation experiments also demonstrate the performance of our proposed algorithm. 
    more » « less
  3. We study high-dimensional signal recovery from non-linear measurements with design vectors having elliptically symmetric distribution. Special attention is devoted to the situation when the unknown signal belongs to a set of low statistical complexity, while both the measurements and the design vectors are heavy-tailed. We propose and analyze a new estimator that adapts to the structure of the problem, while being robust both to the possible model misspecification characterized by arbitrary non-linearity of the measurements as well as to data corruption modeled by the heavy-tailed distributions. Moreover, this estimator has low computational complexity. Our results are expressed in the form of exponential concentration inequalities for the error of the proposed estimator. On the technical side, our proofs rely on the generic chaining methods, and illustrate the power of this approach for statistical applications. Theory is supported by numerical experiments demonstrating that our estimator outperforms existing alternatives when data is heavy-tailed. 
    more » « less
  4. We propose and analyze a new estimator of the covariance matrix that admits strong theoretical guarantees under weak assumptions on the underlying distribution, such as existence of moments of only low order. While estimation of covariance matrices corresponding to sub-Gaussian distributions is well-understood, much less in known in the case of heavy-tailed data. As K. Balasubramanian and M. Yuan write, "data from real-world experiments oftentimes tend to be corrupted with outliers and/or exhibit heavy tails. In such cases, it is not clear that those covariance matrix estimators .. remain optimal" and "what are the other possible strategies to deal with heavy tailed distributions warrant further studies." We make a step towards answering this question and prove tight deviation inequalities for the proposed estimator that depend only on the parameters controlling the intrinsic dimension'' associated to the covariance matrix (as opposed to the dimension of the ambient space); in particular, our results are applicable in the case of high-dimensional observations. 
    more » « less
  5. We consider multiple parallel Markov decision processes (MDPs) coupled by global constraints, where the time varying objective and constraint functions can only be observed after the decision is made. Special attention is given to how well the decision maker can perform in T slots, starting from any state, compared to the best feasible randomized stationary policy in hindsight. We develop a new distributed online algorithm where each MDP makes its own decision each slot after observing a multiplier computed from past information. While the scenario is significantly more challenging than the classical online learning context, the algorithm is shown to have a tight O( T ) regret and constraint viola- tions simultaneously. To obtain such a bound, we combine several new ingredients including ergodicity and mixing time bound in weakly coupled MDPs, a new regret analysis for online constrained optimization, a drift analysis for queue processes, and a perturbation analysis based on Farkas’ Lemma. 
    more » « less
  6. This paper considers online convex optimization (OCO) with stochastic constraints, which generalizes Zinkevich’s OCO over a known simple fixed set by introducing multiple stochastic functional constraints that are i.i.d. generated at each round and are disclosed to the decision maker only after the decision is made. This formulation arises naturally when decisions are restricted by stochastic environ- ments or deterministic environments with noisy observations. It also includes many important problems as special case, such as OCO with long term constraints, stochastic constrained convex optimization, and deterministic constrained con- vex optimization. To solve this problem, this paper proposes a new algorithm that achieves O(√T ) expected regret and constraint violations and O(√T log(T )) high probability regret and constraint violations. Experiments on a real-world data center scheduling problem further verify the performance of the new algorithm. 
    more » « less